Journal Article Assessment of the relations between crop yield variability and the onset and intensity of the West African Monsoon

CGSpace

Abstract

Timely information on the onset of rain is essential for effectively adapting to climate variability and increasing the resilience of rain-fed systems. However, defining optimal sowing dates based on the onset of rain has been challenging. We compared and analyzed the West African Monsoon onset according to Raman’s, modified Sivakumar’s, Yamada’s, and Liebmann’s definitions using station data from 13 locations in Senegal from 1981 to 2020. Subsequently, we systematically analyzed the effect of the differently estimated monsoon onsets(WAM-OS) on maize development. To this end, we applied the set of the generated WAM-OS as sowing dates in simulations of maize growth and yields, applying the Agricultural Production Systems sIMulator(APSIM) at 13 locations representing different agroclimatic regions across Senegal. We examined the impact of the sowing dates under variable conditions of soil organic carbon(SOC) and plant available water capacity(PAWC). Our analysis showed statistically significant differences between the WAM-OS dates, rainfall characteristics computed for these, and maize yields simulated using different sowing dates according to the WAM-OS definitions. We found Liebmann’s onset dates were most suitable for both hydrological and agronomic applications since they were characterized by the lowest probabilities of prolonged dry spells after onset, the highest amount of rainfall in the mid-season, and the highest simulated maize yields compared to other onset definitions. Our results highlight the importance of sowing dates and their accurate prediction for improving crop productivity in the study area. We also found SOC and PAWC were important factors that improved maize yields. We recommend improved access to climate information services to help smallholder farmers get timely information that helps them in their sowing decisions and encourage agronomic interventions that improve the SOC level, soil pore volume to retain more water and other soil properties directly(e.g., tillage) and indirectly(suited cropping systems) that contribute to enhancing crop productivity.